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Abstract

This note provides a completeness result on the compressed modes introduced in
[7, 8]. We prove the fact that for an unbounded Hermitian operator, the sub-eigenspace
of spanned by the first M eigenfunctions can be approximated by first N compressed
modes with improvable accuracy as N increases, for any fixed regularization parameter
µ.

1 Introduction

In [7], the authors introduce a novel framework for obtaining spatially localized (“sparse”)
solutions to a class of problems in mathematical physics that can be formulated as varia-
tional problems. The method is to add an L1 regularization term in the variational problem,
which penalizes the L1 norm of the solution. This yields solutions called the “compressed
modes”. Numerical evidences in [7, 8] show that compressed modes have compact support.
In recent work [1], the author provides some interesting theoretical analysis of compressed
modes. It is shown that as the L1 regularization term in the variational problem vanishes,
the compressive modes converge in the L2 norm to a unitary transformation of eigenfunc-
tions of the original Hamiltonian. The idea of obtaining sparse solutions by `1 minimization
can also be found in other work such as [5, 3, 2, 4, 9]. The regularization parameter for
the L1 term is used to balance between the consistency with the original problem and the
sparsity of the solution.

In [7] the authors consider the time-independent Schrödinger’s equation for the inde-
pendent particles, where the Hamiltonian is defined as

Ĥ = −1

2
∆ + V (x), (1)
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which is an unbounded positive-definite Hermitian operator. The variational problem for
the ground state energy of N particles is proposed as

E0 = min
ΦN

N∑
j=1

〈φj , Ĥφj〉 s.t. 〈φj , φk〉 = δjk. (2)

The solutions ΦN = {φi}Ni=1 are a set of orthonormal eigenfunctions corresponding to
eigenvalues {λi}Ni=1, where the eigenvalues are arranged in non-decreasing order. Any
unitary transformation of {φi}Ni=1 also gives a set of solutions to this variational problem.
In history, in order to obtain localized solutions to this problem, people choose the the
solutions to be some unitary transformation of the eigenfunctions, such that the solutions
are “maximally localized”, which are called the localized Wannier functions [10, 6].

Different from this approach, the compressed modes are constructed by solving a new
variational problem

E = min
ΨN

N∑
j=1

(
1

µ
|ψj |1 + 〈ψj , Ĥψj〉

)
s.t. 〈ψj , ψk〉 = δjk, (3)

where the minimizers ΨN = {ψj}Nj=1 are called the compressed modes for the variational

problem (2), and |ψj |1 =
∫

Ω |ψj(x)|dx. The compressed modes {ψi}Ni=1 are shown to be
more localized than the Wannier functions. But unlike Wannier functions, they cannot be
obtained by a unitary transformation of the eigenfunctions of Ĥ. We note that in [1] it
was shown that for fixed N , a unitary transformation of the compressed modes and their
associated eigenvalues converge as µ approaches infinity to their limiting values, which are
eigenfunctions and eigenvalues of Ĥ. In this paper we answer a different and important
question, namely for fixed µ, under some unitary transformation, these compressed modes
can approximate the eigenfunctions in a systematically improved manner as N increases.
This result characterizes the closeness between the space spanned by the compressed modes
and the true eigen space.

The rest of the paper is organized as follows. In Section 2, we formally describe the
main result. In Section 3, we state the key lemmas that would be used in the proof of the
main result, which is given in Section 4. The proofs to the lemmas are put in the appendix.
In the end, we make some concluding remarks.

2 Main result

In general, let Ĥ be an unbounded positive-definite Hermitian operator. It is well known
that Ĥ has discrete eigenvalues approaching infinity, and the corresponding eigen-functions
can form a set of orthonormal basis in L2(Ω), where Ω is the domain in consideration. We
assume that Ω is bounded. Denote λi the eigenvalues for Ĥ arranged in ascending order,
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and φi be the corresponding orthonormal eigenfunctions. The first N compressed modes
associated with Ĥ refer to the solution to the variational problem (3). We claim the
following result:

Theorem 1. Given any fixed parameter µ, the first N compressed modes up to an unitary
transformation, denoted by {ξ1, . . . , ξN}, satisfies

‖φi − ξi‖22 ≤
2NCΩ

µ(λN+1 − λi)
, (4)

for i = 1, . . . , N , where CΩ is a constant depending only on Ω.
If the eigenvalues {λi} satisfies

lim
i→∞

i

λi
= 0, (5)

then for fixed integer M < N and i = 1, . . . ,M ,

‖φi − ξi‖2 ≤
2NCΩ

µ(λN+1 − λM )
. (6)

As a result,
lim
N→∞

‖φi − ξi‖2 = 0 (7)

uniformly for i = 1, . . . ,M .

Remark 1. As an example, let Ĥ = −1
2∆ and Ω be a finite interval, then the eigenvalues

satisfy (5), in which the above theorem holds.

3 Some useful lemmas

For the positive-definite unbounded Hermitian operator Ĥ, the set of eigenfunctions {φi}∞i=1

is an orthonormal basis in L2(Ω) up to a normalization. Let {ψ1, . . . , ψN} be a set of
orthonormal functions in L2(Ω). In particular, they can be the first N compressed modes.
Then each ψj has an linear expansion

ψj =

∞∑
i=1

ajiφi, (8)

where aji are the coordinates of ψj under the basis {φi}.
By the orthogonality of ψj ’s, we have

∞∑
i=1

a∗jiaki = δjk, (9)
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where δjk is the Dirac delta function. A special case is that

∞∑
i=1

|aji|2 = 1, (10)

for j = 1, . . . , N .
Our first lemma is concerned with the summation of |aji|2 in the first dimension, which

is also given as Lemma 3.1 in [1].

Lemma 1. In the previous notations,

N∑
j=1

|aji|2 ≤ 1, (11)

for i = 1, 2, . . ..

Proof. See the appendix.

In the next lemma, we give an estimate of the error of the approximate energy in (3)
to the true energy given by (2).

Lemma 2.

E0 ≤ E ≤ E0 +
NCΩ

µ
, (12)

where E and E0 are defined in (3) and (2).

Proof. See the appendix.

Remark 2. In the definition of the variational problem (3), by replacing the L1 term by
any functional bounded by L2 norm, the energy E still satisfies upper estimate

E ≤ E0 + CΩN/µ, (13)

for some constant CΩ depending only on Ω.
A corollary of this lemma, also shown in [1], is that if µ → ∞, E → E0, which shows

the consistency of the variational form (3) with (2).

The more important lemma, as follows, gives an sharper lower bound of E than that
in Lemma 2.

Lemma 3. Let the first N compressed modes be ψ1, . . . , ψN . Use the notation in (8) and
denote

ai =
N∑
j=1

|aji|2, (14)
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for i = 1, 2, . . ..
Then we have

N∑
k=1

〈ψk, Ĥψk〉 =

N∑
i=1

λi +

N∑
i=1

(1− ai)(λN+1 − λi) +

∞∑
i=N+1

ai(λi − λN+1). (15)

As a consequence, a lower bound for E is given by

E ≥ E0 +
N∑
i=1

(1− ai)(λN+1 − λi). (16)

Proof. Proof by standard calculation. Given in the appendix.

4 Proof of the main theorem

By (8), the compressed modes ψj has coordinates {aji}∞i=1 under the basis {φi}∞i=1. Under
an unitary transformation U ∈ CN×N , {ψj}Nj=1 are transformed to {ξj}Nj=1, where each ξj
has coordinates {bji}∞i=1 under the basis {φi}∞i=1. More exactly,

U


a1i

a2i
...
aNi

 =


b1i
b2i
...
bNi

 , (17)

for i = 1, . . ., and

ξj =
∞∑
i=1

bjiφi, (18)

for j = 1, . . . , N . By QR decomposition, there exists such an U that
b11 b12 · · · b1N
b21 b22 · · · b2N
...

... · · ·
...

bN1 bN2 · · · bNN

 (19)

is upper triangular, that is, bji = 0 for i < j, and bjj are non-negative real numbers.
Because unitary transformation preserves the length of the vector,

N∑
j=1

|bji|2 =
N∑
j=1

|aji|2 = ai. (20)
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Since {ξj}∞j=1 are orthonormal,
∞∑
i=1

|bji|2 = 1. (21)

Because bji = 0 for i < j ≤ N , for i = 1, . . . , N , we rewrite (20) as

i∑
j=1

|bji|2 = ai, (22)

and for j = 1, . . . , N , (21) becomes

∞∑
i=j

|bji|2 = 1. (23)

Next we show that

|bii|2 ≥
i∑

j=1

aj − (i− 1). (24)

for i = 1, . . . , N .
By (22),

|bii|2 = ai −
i−1∑
j=1

|bji|2, (25)

From (23) we know

|bji|2 ≤ 1−
i−1∑
k=j

|bjk|2. (26)

Therefore, for i = 1, . . . , N

|bii|2 ≥ ai −
i−1∑
j=1

(
1−

i−1∑
k=j

|bjk|2
)

= ai − (i− 1) +
i−1∑
j=1

i−1∑
k=j

|bjk|2

= ai − (i− 1) +
i−1∑
k=1

k∑
j=1
|bjk|2

= ai − (i− 1) +
i−1∑
k=1

ak

=
i∑

k=1

ak − (i− 1).

(27)
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By Lemma 2 and 3, we have an estimate of ai as defined in (14) as

N∑
i=1

(1− ai)(λN+1 − λi) ≤
NCΩ

µ
, (28)

where ai ≤ 1 as proved in Lemma 1. Because {λi} are non-decreasing,

i∑
k=1

(1− ak) ≤
NCΩ

µ(λN+1 − λi)
, (29)

which is combined with (27) to give

1 ≥ ai ≥ |bii|2 ≥ 1− NCΩ

µ(λN+1 − λi)
, (30)

for i = 1, . . . , N . By our construction, bii are non-negative real numbers, so

(1− bjj)2 ≤ 1− b2jj ≤
NCΩ

µ(λN+1 − λi)
. (31)

Now we calculate ‖φi − ξi‖22. We note (18) and write

‖φj − ξj‖2 =

∥∥∥∥∥∥(bjj − 1)φj +

∞∑
i=1,i 6=j

bjiφi

∥∥∥∥∥∥
2

(32)

Since {φi}∞i=1 are orthonormal,

‖φj − ξj‖2 = (bjj − 1)2 +
∞∑

i=1,i 6=j
|bji|2

= (bjj − 1)2 + 1− b2jj
≤ 1− b2jj + 1− b2jj
≤ 2NCΩ

µ(λN+1−λj) .

(33)

From this inequality we can conclude that for a fixed µ > 0 and integer M , if eigenvalues
of Ĥ satisfy (5), then for j = 1, . . . ,M , ‖φj − ξj‖2 converges uniformly to 0 as N →∞.

5 Conclusion

In this short note, we prove a completeness theorem on the compressed modes. As discussed
in Remark 2, the result in Theorem 1 still holds, up to a change in the constant coefficient,
if the L1 term is replaced by any functional bounded by L2 norm in the variational problem
(3).
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By changing the variational formulation (3) to

E = min
ΨN

N∑
j=1

〈ψj , Ĥψj〉+
1

µ
|ΨN |1 s.t. 〈ψj , ψk〉 = δjk, (34)

where |ΨN |1 denotes the 1-norm of the matrix, we can improve the estimate of ‖φi − ξi‖22
to

‖φi − ξi‖22 ≤
2CΩ

µ(λN+1 − λi)
, (35)

In this case the requirement (5) on the eigenvalues can be relaxed to

lim
i→∞

λi =∞, (36)

and ‖φi − ξi‖22 converges uniformly to 0 as N goes to infinity, for i = 1, . . . ,M with M
fixed.

A Proof of the lemmas

A.1 Proof of Lemma 1

The proof of this lemma is also given in [1], and here we give a different one. By (9) (the
orthogonality condition), for any ε > 0 and fixed N , there exists n > N such that

An =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · ·
...

aN1 aN2 · · · aNn

 (37)

satisfies ∣∣∣∣∣
n∑
i=1

a∗jiaki

∣∣∣∣∣ < ε/N, for j 6= k. (38)

We now consider an N ×N Hermitian matrix B = (1 + ε)I −AnA∗n, whose j, k-th entry is

Bjk =


−

n∑
i=1

ajia
∗
ki if j 6= k

(1 + ε)−
n∑
i=1
|aji|2 if j = k

. (39)

We note that

Bjj ≥ ε and
N∑

k 6=j,k=1

|Bjk| < ε, (40)
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so B is a diagonal dominant Hermitian matrix with positive diagonal entries, hence it is
positive-definite. Also (1 + ε)I −A∗nAn is an n× n positive-definite matrix, so its diagonal
entries are all positive real numbers. Therefore, the diagonal entries of A∗nAn are all less
than 1 + ε, that is,

N∑
j=1

|aji|2 < 1 + ε for i = 1, . . . . (41)

Since
N∑
j=1
|aji|2 is independent of ε, we let ε→ 0 and obtain

N∑
j=1

|aji|2 ≤ 1 for i = 1, . . . . (42)

A.2 Proof of Lemma 2

Let ΨN = {ψj}Nj=1 be the minimizer of (3), then

E >

N∑
j=1

〈ψj , Ĥψj〉 ≥ min
ΦN

N∑
j=1

〈φj , Ĥφj〉 = E0. (43)

For any ψ ∈ L2(Ω) with ‖ψ‖ = 1,∫
Ω

|ψ|dx ≤ 1

2

∫
Ω

√
|Ω||ψ|2 +

1√
|Ω|

dx =
√
|Ω|. (44)

The equality holds when |ψ| = 1√
|Ω|

a.e. in Ω. Then

E = min
ΨN

N∑
j=1

(
1

µ
|ψj |1 + 〈ψj , Ĥψj〉) ≤ min

ΨN

N∑
j=1

〈ψj , Ĥψj〉+
N∑
j=1

1

µ

√
|Ω| = E0 +

N
√
|Ω|
µ

. (45)
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A.3 Proof of Lemma 3

We note (8) and Ĥφi = λiφi,

N∑
j=1
〈ψj , Ĥψj〉

=
N∑
k=1

∞∑
i=1
|aki|2λi

=
∞∑
i=1

N∑
k=1

|aki|2λi

=
N∑
i=1

aiλi +
∞∑

i=N+1

aiλi

=
N∑
i=1

λi +
N∑
i=1

(1− ai)(λN − λi) +
N∑
i=1

(ai − 1)λN +
∞∑

i=N+1

ai(λi − λN ) +
∞∑

i=N+1

aiλN

=
N∑
i=1

λi +
N∑
i=1

(1− ai)(λN − λi) +
∞∑

i=N+1

ai(λi − λN ) +

( ∞∑
i=1

ai

)
λN −NλN ,

(46)
where ai is defined in (14). Also we note that

∞∑
i=1

ai =
∞∑
i=1

N∑
j=1

|aji|2 =
N∑
j=1

∞∑
i=1

|aji|2 = N, (47)

where we use the fact (10). Then following (46) we have

N∑
j=1

〈ψj , Ĥψj〉 =

N∑
i=1

λi +

N∑
i=1

(1− ai)(λN − λi) +

∞∑
i=N+1

ai(λi − λN ). (48)
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